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The article proposes a simple C∞ interpolation of discretized lattice fields on
regular and irregular grids. The method is based on localized C∞ but not analytic
basis functions, which vanish outside an open set (region of influence). As a result,
the interpolating fields at a point depend exclusively on the nodal values within the
region of influence. The method can be applied to generic fields whose support is a
limited set of n-dimensional space, starting from discretized values given on regular or
irregular grids. Particular attention is focused on the interpolation of CFD-computed
velocity fields that give rise to Lagrangian chaos. c© 2002 Elsevier Science (USA)
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I. INTRODUCTION

A current issue in many engineering problems is the interpolation of a scalar or vec-
tor field with prescribed regularity constraints [1, 2]. These constraints, which may arise
either from computational needs or physical conditions regarding the properties of the
field, require that the interpolation be Ck (k ≥ 1), i.e., with continuous derivatives up to
order k. For fluid dynamics applications, interpolation techniques are important both in
solving the Navier–Stokes boundary value problem and in performing Lagrangian simula-
tions of the dynamics of kinematic quantities associated with flow (particle and interface
tracking).

Unchecked application of simple interpolation routines with limited regularity conditions
may give rise to numerical inconsistencies and stability problems, especially in two- and
three-dimensional simulations or in the presence of nonuniform grids.

A typical example where regularity conditions play a fundamental role is in stream-
function/vorticity methods for two-dimensional flows [3]. Given the stream function ψ ,
obtained from computational fluid dynamics (CFD), the velocity field v = (vx , vy)
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recovered from the first-order partial derivatives of ψ :

vx = ∂ψ

∂y
, vy = −∂ψ

∂x
. (1)

From Eq. (1), it is clear that any interpolation of ψ should be at least C1 in any open
set embedded in the flow domain. The simplest and most widely used way to fulfill this
requirement is to apply bicubic interpolation [4]. The use of this method requires that not
only the values of ψ but also its first-order derivatives, ∂ψ/∂x, ∂ψ/∂y, and its second-
order cross derivative, ∂2ψ/∂x∂y, be specified at the nodes. In practice, these derivatives
are obtained by discrete differentiation of the values of the function at the nodal points of
the discrete grid. The accuracy of the resulting velocity fields obtained by interpolating the
stream function therefore depends essentially on the accuracy in obtaining the required first-
and second-order numerical derivatives at the nodes. As a result, the bicubic interpolation
of ψ to obtain the velocity field corresponds to a C0-interpolation of the velocity field itself
obtained from discrete differentiation of the stream function. A review of several polynomial
interpolation methods can be found in [5].

In addition to regularity conditions, other computational criteria related to algorithmic
complexity (i.e., to the scaling of the computer time required to run an algorithm as a
function of the number of grid nodes) may play a role in the choice of the most convenient
interpolation strategy. Typical examples of techniques giving rise to such problems are
Fourier series expansions (which are widely used for this purpose, especially in connection
with spectral numerical methods, despite the fact that they cannot be strictly defined as
interpolation but rather are L2-approximations) and any kind of interpolation procedure for
which the value at any point x is the weighted average of the interpolation basis functions
φi (x) over all of the N + 1 nodes of the discrete grid:

ψin(x) =
N∑

i=0

ai φi (x). (2)

In these methods, the computation of the interpolating field at each point makes it necessary
to sum over all of the N + 1 interpolating functions. This nonlocal approach may be compu-
tationally unacceptable because of the huge amount of computer time needed to compute a
sum over N + 1 elements each time, especially in connection with Lagrangian simulations
of particle tracking, which require the numerical integration of the velocity field in order
to obtain the particle position. Since the integration of the kinematics equation of motion
should be performed in Lagrangian simulations over long intervals of time and/or over a
large number of particles in order to obtain statistically significant results (as required in
order to obtain velocity correlation functions in turbulent flows [6, 7] or statistically relevant
parameters such as the Lyapunov exponent or mixing efficiencies in laminar chaotic flows
[8]), the extremely high number of calls to the interpolated velocity field in the presence
of nonlocal interpolations may lead to unacceptably long computational times. This is, for
example, the case with bicubic spline interpolation.

Recently, several nonlocal interpolation/approximation methods have been proposed
based on the application of radial basis functions [9–11], on neural network approximation
using sigmoidal functions [12–14], and on wavelet analysis [15–18]. The latter approach is
grounded on multiresolution analysis [19] and reduces the interpolation problem to an iter-
ative scheme by enforcing the ladder structure intrinsic to multiresolution decomposition.



C∞ INTERPOLATION OF DISCRETE FIELDS 147

This article proposes a simple and efficient local C∞ interpolation scheme for approx-
imating fields in an arbitrary number of dimensions (D = 2, 3, . . .) starting exclusively
from the values of the fields at the nodal points. The resulting interpolation function can
be differentiated infinitely many times, and therefore1 it is, a fortiori, C1, as required in
many applications. The interpolation scheme is formally analogous to Eq. (2) and can be
defined in the classification adopted by Yeung and Pope [2] as an optimal interpolation. The
central issue lies in the choice of the basis functions φi (x) = ωi (x) (see Section II for their
definition), which vanish outside a given neighborhood of the nodal point xi (the region
of influence). As a result, the interpolation is local in that the value at any point depends
exclusively on the value at the grid points that fall within its region of influence. Since the
number of nodes falling within the region of influence of any point is small and definitely
much smaller than the total number of nodes, there are no computational problems related
to nonlocal interpolations in connection with Lagrangian simulations.

Moreover, the interpolation procedure proposed requires only the nodal values of the
field, provides accurate approximations for the first partial derivatives, and can be applied
equally well on uniform and nonuniform (structured or unstructured) grids.

The article is organized as follows. Section II analyzes the properties of the localized basis
functions ωi (x). Section III develops the interpolation procedure and discusses the influence
of the parameters on the accuracy. Section IV shows the numerical results obtained for model
systems in one and two dimensions. Section V analyzes the results of the interpolation in
the application to Lagrangian simulations of passive tracers in a model cavity flow giving
rise to Lagrangian chaos.

II. LOCALIZED C∞ BASIS FUNCTIONS

This section describes the main properties of the basis functions ωi (x) used in the
interpolation. We first consider the one-dimensional case. Let the family of functions
ωi (x) = ω(x; xi , δ, β) on the real line x ∈ (−∞, ∞), depending on the parameters xi ,
δ > 0, β > 0, be given by

ω(x; xi , δ, β) =



exp
[
β + β δ2

(x − xi )2 − δ2

]
, x ∈ (xi − δ, xi + δ)

0, elsewhere in 
.
(3)

The more compact notation ωi (x) = ω((x − xi )/δ) will be used in the rest of the article,
omitting the explicit dependence on β and δ. The functions ωi (x) defined by Eq. (3) are
C∞ but not analytic. The derivatives of any order of ωi (x) can in fact be expressed as

p(x)

[((x − xi )2 − δ2)2]m
exp

[
β + β δ2

(x − xi )2 − δ2

]
, (4)

where m is a positive integer and p(x) is a polynomial in x . For x → xi ± δ, the expression
Eq. (4) tends to 0, which means that ωi (x) can be differentiated infinitely many times over
the real line. The function ωi (x) is not, however, analytic in (xi − δ, xi + δ) since it cannot
be expressed as a Taylor series in the neighborhood of xi ± δ. The localized C∞ functions

1 Given a bounded domain Q of 
n , the space of functions that are infinitely many times differentiable in
Q, C∞(Q) is defined as C∞(Q) = ∩∞

k=1Ck(Q). Therefore, if f ∈ C∞(Q), it follows that f ∈ C1(Q).
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FIG. 1. ω(ξ) vs ξ = (x − xi )/δ for several values of β = 0.2, 1, 10, 100. The arrow indicates increasing
values of β.

ωi (x) are widely used in functional analysis and in the theory of distributions (general-
ized functions). They are also applied as kernels to obtain regularized approximations of
generalized functions and to prove density theorems for functional spaces (see, e.g., [20]).

As can be observed from its definition, Eq. (3), ω((x − xi )/δ) vanishes identically along
with all of its derivatives outside the interval of width 2δ centered around xi . Because
of this property (which is particularly appealing for interpolation purposes), the functions
ω((x − xi )/δ) are strongly localized2, and the interval (xi − δ, xi + δ) can be defined as
their region (interval in the one-dimensional case) of influence. The region of influence I
of a scalar function f (x) is the set of points for which f (x) �= 0 (i.e., supp ( f ) = Ī).

Figure 1 shows the behavior of ω((x − xi )/δ) for several values of the parameter β.
For x = xi , ω((x − xi )/δ) = 1 for all β. The parameter β plays the role of a localization
parameter within the region of influence. As β increases, the functions ω((x − xi )/δ) are
more peaked around x = xi . We return to the influence ofβ in the analysis of the interpolation
procedure.

There are several ways of defining localized C∞ functions in 
n . Two of these are now
explicitly discussed. The first way is to consider

ω̃i (x) = ωi

( |x − xi |
δ

)
, (5)

where |x − xi | = [
∑n

α=1(xα − xi,α)2]1/2 is the distance function in 
n . According to this
definition, the region of influence is a ball of radius δ centered at xi . Alternatively, we can
define a family of localized functions ω̄i1,...,in (x) on 
n as

ω̄i1,...,in (x) =
n∏

α=1

ω
(
xα; xiα , δα, βα

)
, (6)

2 The concept of localization can be defined in terms of the region of influence. A function f (x), x ∈ 
n is
strongly localized if its region of influence (the closure of which is the support) is limited, i.e., is precompact.
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centered at xi1,...,in = (xi1 , . . . , xin ), with δα, βα > 0, i.e., as the product of the n one-
dimensional functions defined by Eq. (3) along each coordinate axis of a Cartesian ref-
erence system. In the case of Eq. (6), the region of influence is given by the rectangular set

I = {x | |xα − xi,α| < δα, α = 1, . . . , n}, (7)

centered around xi1,...,in . The functions ω̄i1,...,in (x) defined by Eq. (6) possess more degrees of
freedom (free parameters) than the functions ω̃i (x) defined by Eq. (5). In the latter case, the
region of influence is uniform with respect to all the coordinates and is characterized by the
radius δ. The localization properties within the region of influence are enforced by means of a
single parameter β. In the case of Eq. (6), the region of influence is specified by the widths δα

of the n coordinate intervals, the Cartesian product of which forms I. Moreover, a parameter
βα can be associated with each xα . In principle, this gives much more flexibility in perform-
ing the interpolation. From now on, the basis functions ω̄i1,...,in (x) will be used, although
qualitatively analogous results can be obtained by applying the functions defined by Eq. (5).

III. INTERPOLATION METHOD

This section analyzes the interpolation method based on the localized functions defined
in Section II. The one-dimensional case of regular grids is first considered. The analysis is
then extended to higher dimensions and nonuniform grids.

Let us consider an ensemble of grid points xi = i/N , i = 0, . . , N on the unit interval
[0, 1] (any bounded interval can be transformed upon rescaling into the unit interval). Let
the values ψi of a continuous scalar field ψ(x) be assigned. As for any optimal interpolation
procedure, the interpolation writes

ψin(x) =
N∑

i=0

aiω(x; xi , δ, β). (8)

In Eq. (8) it is assumed that all of the interpolation basis functions are characterized by the
same localization parameters δ and β.

The most naive interpolation strategy is to choose a region of influence of the basis
function equal to the lattice spacing �x = 1/N between nodal points, δ = �x . As a result,
since ω(xk; xi , �x, β) = 0, for xk �= xi and ω(xi ; xi , �x, β) = 1, it follows immediately
that ai = ψi , i = 0, . . . , N . While this approach yields a C∞ interpolation for ψ(x), it
induces “unnaturally” constrained behavior for its derivatives. By the nature of the basis
functions, any derivative of ψin(x) of the order k = 1, 2, . . is identically equal to 0 at the
nodal points:

dkψin(x)

dxk

∣∣∣∣
x=xi

= 0, i = 0, 1, . . . , N . (9)

In order to overcome this problem, the region of influence should be enlarged beyond the
grid spacing, e.g., by choosing

δ = (M + 1) �x, (10)
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where M is a positive integer. The parameter M controls the number of basis functions that
contribute to the value of the interpolating function at a generic node, which is at most equal
to 2M + 1. Indeed, at any point x ∈ [0, 1], we have

ψin(x) =
[x]+M+1∑

i=[x]−M−1

aiωi (x), (11)

where [N x] is the integer part of (N x), and ai = 0 for i < 0 and i > N . The values of
the weights ai (i = 0, . . . , N ) can thus be obtained by solving the system of N + 1 linear
equations in the N + 1 unknowns a = (a0, . . . , aN )T on obtained from Eq. (11) at x = x j

( j = 0, . . . , N );

Ba = (I + Ω)a = ψ, (12)

where I is the identity matrix, ψ = (ψ0, . . . , ψN )T is the vector of the nodal values of the
function, and Ω = B − I is the coefficient matrix.

Although not strictly necessary, it may be convenient to treat the interpolation of any
point in a uniform way, i.e., such that the value of ψin(x) at any x ∈ [0, 1] is always the
sum of 2M + 1 contributions.

This leads to a discrimination among several interpolation strategies depending essentially
on the way the endpoints of an interval are considered, as discussed below.

CASE I. Strict internal interpolation. In this approach, no external nodes are added, and
the value of the interpolating function at i = 0 and i = N is the sum of M contributions
deriving from the internal nodes. In this case, the matrix Ω attains the form

Ω =




0 ω̂1 ω̂2 ω̂3 · · · · · · 0 0 0

ω̂1 0 ω̂1 ω̂2 · · · · · · 0 0 0

ω̂2 ω̂1 0 ω̂1 · · · · · · 0 0 0
. . . . . . . . . . . . .

0 · · · ω̂2 ω̂1 0 ω̂1 ω̂2 · · · 0
. . . . . . . . . . . . .

0 0 0 0 · · · · · · ω̂1 0 ω̂1

0 0 0 0 · · · · · · ω̂2 ω̂1 0




, (13)

where the quantities ω̂i depend on β and M and are given by

ω̂i = exp

[
− β i2

(M + 1)2 − i2

]
, i = 1, . . . , M. (14)

The matrix Ω is a Toeplitz matrix, characterized by the property that the entries along each
diagonal are equal to each other [21].

CASE II. Periodic interpolation. This technique naturally applies in cases where the
function ψ(x) is periodic or can be made periodic. The abscissa x is no longer defined
on the unit square but on the unit circumference S1, and the distance between two points
should therefore be defined by taking into account the compact topology of S1. This can be
straightforwardly taken into account by regarding the interpolation as if it were still on the
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interval [0, 1] through the addition of M “fictitious” external nodes close to the endpoints,
where periodic boundary conditions are enforced:

a−i = aN−i , aN+i = ai , i = 1, . . . , M. (15)

As a result, for the endpoint j = 0, the interpolation scheme leads to the equation

a0 +
M∑

i=1

ω̂i ai +
M∑

i=1

ω̂i aN−i = ψ0. (16)

Since, due to the periodicity, a0 = aN , periodic interpolation leads to a system of N linear
equations for the coefficients ai (i = 0, . . . , N − 1), analogous to Eq. (12), with a coefficient
matrix Ω that is still Toeplitz and is given by

Ω =




0 ω̂1 ω̂2 ω̂3 · · · · · · ω̂3 ω̂2 ω̂1

ω̂1 0 ω̂1 ω̂2 · · · · · · ω̂4 ω̂3 ω̂2

ω̂2 ω̂1 0 ω̂1 · · · · · · ω̂5 ω̂4 ω̂3
. . . . . . . . . . . . .

0 · · · ω̂2 ω̂1 0 ω̂1 ω̂2 · · · 0
. . . . . . . . . . . . .

ω̂2 ω̂3 ω̂4 ω̂5 · · · · · · ω̂1 0 ω̂1

ω̂1 ω̂2 ω̂3 ω̂4 · · · · · · ω̂2 ω̂1 0




. (17)

CASE III. External “flat” interpolation. The idea underlying this kind of interpolation is
to introduce M external nodes close to the edges and to assume that

ai = a0, aN+1 = aN , i = 1, . . . , M, (18)

i.e., that the coefficients associated to the external nodes “flatly” coincide with the coefficient
at the closest end-node. For example, for j = 0, the interpolation scheme leads to the
equation

a0 +
(

M∑
i=1

ω̂i

)
a0 +

M∑
i=1

ω̂i ai = ψ0. (19)

Eq. (12) is still valid, and the coefficient matrix � takes the form

Ω =




∑M
i=1ω̂i ω̂1 ω̂2 ω̂3 · · · · · · 0 0 0

ω̂1
∑M

i=2ω̂i ω̂1 ω̂2 · · · · · · 0 0 0

ω̂2 ω̂1
∑M

i=3ω̂i ω̂1 · · · · · · 0 0 0
. . . . . . . . . . . . .

0 · · · ω̂2 ω̂1 0 ω̂1 ω̂2 · · · 0
. . . . . . . . . . . . .

0 0 0 0 · · · · · · ω̂1
∑M

i=2ω̂i ω̂1

0 0 0 0 · · · · · · ω̂2 ω̂1
∑M

i=1ω̂i




. (20)
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These three variations on the theme lead to the same equation, Eq. (12), for determining
the coefficient vector a, which can be expressed in the equivalent form

a = L[a] = −Ωa +ψ, (21)

and they are suitable for unified mathematical treatment.
Eq. (21) can be viewed as the definition of the linear operator L[a] in the Euclidean 
N+1

∞
space (
N

∞ for Case II, because of periodicity), equipped with the following metrics:

ρ∞(x, y) = max
0≤i≤N

|xi − yi |. (22)

The following Lemma holds.

LEMMA 1. In the space 
N+1
∞ , the linear operator defined by Eq. (21) is a contraction

if the condition

N∑
j=0

|�i j | ≤ α < 1, i = 0, 1, . . . , N , (23)

holds, where �i j are the entries of the matrix Ω.

Proof. This is an elementary application of the Banach contraction theorem. The detailed
proof can be found in [22]. �

A simple application of Lemma 1 leads to the following result.3

THEOREM 1. For any M = 1, 2, . . . , there is a value β∗(M) such that for β > β∗(M)

and for any interpolation scheme I–III adopted:

• The operator L[a] is contractive;
• Eq. (12) admits a unique solution.

Proof. Consider the sum of the entries of the matrix Ω over each row. Independently of
the interpolation strategy adopted (Cases I–III), it follows that

N∑
j=0

|�i j | ≤ 2
M∑

j=1

ω̂ j (β, M) = 2
M∑

i=1

exp

[
− βi2

(M + 1)2 − i2

]
= �(β, M). (24)

For any fixed M , the function �(β, M) is continuous and decreases monotonically with β.
Since �(0, M) = 2M and limβ→∞ �(β, M) = 0, there exists a value β∗ = β∗(M) such
that �(β∗, M) = 1. Therefore, for β > β∗(M), �(β, M) = α < 1. By enforcing the result
of Lemma 1, the first part of the theorem is proved. The second part follows from the Banach
contraction theorem. Since L[a] is contractive, there exists a unique fixed point, say a = a∗,
such that a∗ = L[a∗]. By definition, a∗ satisfies Eq. (12) and the proof is complete. �

As a byproduct of Theorem 1, we obtain a straightforward iterative method for obtaining
the interpolation coefficients a.

3 The contractive nature of the operator L admits the practical implication that the coefficients of the C∞

interpolation can be straightforwardly obtained by means of a simple and uniformly convergent iterative method,
enforcing the Banach fixed-point theorem.
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COROLLARY 1. If β > β∗(M), for any of the interpolation schemes considered, the
iterative scheme

a(n+1) = −Ωa(n) +ψ, n = 0, 1, . . . (25)

converges towards the solution of Eq. (12) independently of the initial vector a(0).

It is important to observe that Theorem 1 does not imply that Eq. (12) admits no solution
for β ≤ β∗(M). The statement of Theorem 1 is a sufficient condition providing a “safe”
lower bound for the localization exponent that ensures the existence of the solution. It also
yields an efficient iterative procedure for the numerical determination of the coefficient
vector.

The extension to two-dimensional and higher dimensional problems is straightforward.
We shall consider here the case of the basis functions ω̄i1,...,in (x) given by the product of the
one-dimensional basis functions, in the case where the parameters δα , βα (α = 1, 2, . . . , n)
are the same and uniform for all the basis functions. In the case of a two-dimensional
uniform grid xhk = (h/N , k/N ), h, k = 0, . . . , N , the analog of Eq. (11) reads

ψin(x) =
[x]+M+1∑

i=[x]−M−1

[y]+M+1∑
j=[y]−M−1

ai j ωi (x) ω j (y), (26)

where x = (x, y), and the weights ai j can be obtained by solving the corresponding linear
problem analogous to Eq. (12).

THEOREM 2. Consider a C∞ interpolation scheme with respect to the functions ω̄i1,...,in

(x) given by Eq. (6) over an n-dimensional uniform grid. For any n = 1, 2, . . . and M =
1, 2, . . . , the operator L[a] defined by the corresponding linear equation for the coefficients
Eq. (21) is contractive for β > β∗(M, n) where β∗ > 0 is the unique solution of the equation

[�(β∗, M) + 1]n = 2. (27)

Proof. In the n-dimensional case, the matrix � is (N + 1)n × (N + 1)n , and its entries
can be labeled as �(i1,...,in)( j1,..., jn). Condition Eq. (23), ensuring the contractiveness of the
operator L[a], becomes

∑
j1,..., jn

∣∣�(i1,...,in)( j1,..., jn)

∣∣ ≤
M∑

j1=−M

· ·
M∑

jn=−M

ω̂ j1 · · ω̂ jn − 1 =

 M∑

j=−M

ω̂ j




n

− 1

= [φ(β, M) + 1]n − 1 ≤ α < 1. (28)

The threshold value β∗(M, n) for the contractiveness of the operator L[a] is therefore the
solution of Eq. (27). The remainder of the proof is identical to that of Theorem 1. �

Figure 2 shows the behavior of β∗(M, n) vs M for n = 1, 2, 3. The threshold value of β

increases with M , as expected, because β and M counterbalance their action. A larger region
of influence requires a stronger localization within it, i.e., a higher value of the localization
exponent β. Moreover, β∗ increases with the dimension n of the space n within which the
data are embedded.
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FIG. 2. β∗(M, n) vs M for several values of the dimension n.

By the nature of the interpolation procedure, the extension to nonuniform grids is straight-
forward. Given the N nodal couples (xi , ψi ), where the nodal points are arbitrarily dis-
tributed, the interpolating function ψin(x) is simply given by

ψin(x) =
N∑

i=1

ai ω̄i (x), (29)

where ω̄i (x) = ω̄(x, xi , δi ,βi ), i.e., the C∞ basis functions at each node are characterized by
a vector δi = (δi,1, . . . , δi,n) that modulates the shape of the rectangular region of influence,
and by a vector βi = (βi,1, . . . , βi,n) of localization exponents along each of the coordinate
axes. C∞ interpolation on an n-dimensional nonuniform grid therefore admits 2nN degrees
of freedom corresponding to the values of the entries of these two vectors at each node. In
this case too, the interpolation scheme can be recast in the form of a linear system,

a = −Ω(nu)a +ψ = L(nu)[a], (30)

where Ω(nu) = (�
(nu)
(i1,...,in)( j1,..., jn)) is a N × N matrix, where the indices refer to the grid

nodes. The counterpart of Theorem 2 for nonuniform grids is the following.

THEOREM 3. Let {xi }N
i=1 be an n-dimensional grid {xi }N

i=1 to which the values {ψi }N
i=1 of

a scalar field are assigned. For any choice of {δi }N
i=1 such that δi, j > 0, j = 1, . . . , n, there

exist positive integers β∗
i, j = β∗

i, j ({xi }) that depend on the grid, such that for βi, j > β∗
i, j the

operator L(nu) defined by Eq. (30) is contractive and the corresponding C∞ interpolation
scheme admits a unique solution.

Proof. For any node i , there exist Ni ≤ N nonzero entries of Ω(nu) corresponding to
the nodes contributing to the interpolation of node i . Let J (i) = { j1(i), . . . , jNi (i)} be the
indices of these nodes. The sum over the row of the matrix Ω(nu) for a generic i yields
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N∑
j=1

∣∣�(nu)
i, j

∣∣ = Ni∑
k=1

[
n∏

h=1

exp

(
− β jk (i),h

(
xi,h − x jk (i),h

)2

δ2
jk (i),h − (xi,h − x jk (i),h

)2

)]
. (31)

Let

β j,h = β

[
max

i=1,...,N , j∈J (i)

δ2
jk (i),h − (xi,h − x jk (i),h

)2

(
xi,h − x jk (i),h

)2

]
. (32)

Eq. (32) leads to the following upper bound for any i :

N∑
j=1

∣∣�(nu)
i, j

∣∣ ≤ exp(−nβ) Ni . (33)

Therefore, by taking β > maxi log Ni/n, the contractivity condition Eq. (23) is fulfilled. �

IV. NUMERICAL EXAMPLES AND ACCURACY

As a case study to develop general observations on the method proposed and compare it
with existing ones, we shall consider the test function on [0, 1],

ψ(1)(x) = x (1 − x)

2
− sin(2πx) + sin(8πx)

4
+ sin(16πx)

16
, (34)

introduced by Vasilyev et al. [17] as a benchmark for interpolation due to its possession of
multiple scales.

Since we are interested in Ck functions with k ≥ 0, it is convenient to make use of the
metrics adopted for C0 functions,

d(ψ, ψin) = maxx∈[0,1]|ψ(x) − ψin(x)|, (35)

which is conceptually analogous to the metrics, Eq. (22), of 
N
∞. The distance between the

derivatives ψ ′(x) and ψ ′
in(x) can be defined in similar fashion.

Before addressing the accuracy of C∞ interpolation, let us introduce a modification of
external flat interpolation (Case III) in order to account for the differential behavior of the
function near the boundaries.

In order to improve the behavior of the interpolation close to the endpoints, we can
introduce 2Ne external nodes close to i = 0 and i = N and extrapolate the behavior of ψ(x)

at these nodes from the incremental ratio at the endpoints, i.e., from the discretized two-
point representation of the first-order derivative at x = 0 and x = 1. This corresponds to the
assumption that for x = 0 and x = 1, the extrapolation is linear and given by

ψ(x) = ψ(0) − ψ ′(x)|x=0 x, for x close to 0

ψ(x) = ψ(1) + ψ ′(x)|x=1 (x − 1), for x close to 1. (36)

The values of the derivative at the edges can be approximated by applying a two-point
differentiation:

ψ−i = ψ0 − (ψ1 − ψ0)i,
(37)

ψN+1 = ψN + (ψN − ψN−1)i, i = 1, . . . , Ne.
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FIG. 3. Behavior of d(ψ, ψin) vs N for ψ = ψ(1). Eq. (34): (a) piecewise linear; (b) normal cubic splines;
(c) C∞ external flat (β = 30, M = 5); (d) C∞ with pseudo C1 continuation (β = 30, M = 5, Ne = 5).

Correspondingly, the interpolation scheme is defined for i = N + 1 + 2 Ne nodes. The
external flat interpolation described in Section 3 can be applied to this interpolation scheme.
This approach, referred to as pseudo C1 extension (or continuation), leads to an algebraic
structure identical to that of the flat interpolation scheme Eq. (20).

Figure 3 shows the scaling of d(ψ, ψin) vs the number of interpolation points in the
case of C∞ flat external interpolation and of pseudo C1 extension compared to that of
classical interpolation algorithms (C0 piecewise linear interpolation and normal cubic
splines) for the test function Eq. (34). The numerical results indicate that, with the im-
provement of the pseudo C1 continuation, the C∞ interpolation is more accurate (where
accuracy is referred to the uniform norm Eq. (35)) than other methods, including normal
cubic splines and straight flat external interpolation. Both normal cubic splines and flat
C∞ interpolation induce a significant error essentially located close to x = 0 and x = 1,
which either does not decrease or decreases more slowly with the number of interpo-
lation points. This phenomenon is evident from the analysis of the derivatives (Fig. 4).
C∞ interpolation with pseudo C1 extension shows that the error decreases significantly
with N .

The results of Figs. 3 and 4 refer to a fixed value of the localization parameter β and
of M characterizing the class of compactly supported basis functions Eq. (3). The influ-
ence of these parameters on the accuracy of the interpolation is shown in Fig. 5, which
illustrates the behavior of the uniform metrics vs (β − β∗)/β∗ for several values of M .
For external interpolation with pseudo C1 continuation, accuracy does not depend sig-
nificantly on M (for M > 1). At the same time, however, the value of the localization
exponent β should be carefully chosen to be close to the critical values β∗ to ensure
contractiveness.

To conclude, C∞ interpolation provides satisfactory results compared to classical inter-
polation algorithms (such as normal cubic splines). The analysis of the two-dimensional
case is addressed in Section V in connection with a physically interesting example related
to mixing and Lagrangian chaos.
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FIG. 4. Behavior of d(ψ ′, ψ ′
in) for ψ = ψ(1). Eq. (34): (a) normal cubic splines; (b) flat external C∞; (c) C∞

with pseudo C1 continuation (β = 30, M = 5, Ne = 5).

V. INTERPOLATION OF VELOCITY FIELDS THAT GENERATE

LAGRANGIAN CHAOS

The Lagrangian characterization of mixing performance associated with a given flow
field, say v(x, t) (v being the instantaneous velocity at a generic position x of the mix-
ing space M), is one field of application of interpolation theory for which the choice
of the interpolation strategy is of the utmost importance. Lagrangian analysis involves
the determination of geometric and statistical properties associated with the solutions of

FIG. 5. Behavior of d(ψ, ψin) vs (β − β∗)/β∗ for ψ = ψ(1). Eq. (34) with N = 40 for C∞ interpolation with
pseudo C1 continuation (Ne = 5) and M = 3, 5, 8. The arrow indicates increasing values of M .
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the ODE

ẋ = v(x, t). (38)

While an improved understanding of convective mixing mechanisms has been derived
from the application of this approach to simple flows, i.e., flows for which v is known
analytically, in real-world situations the solution of the Navier–Stokes boundary value
problem is obtained in a discretized form. The discretization can be performed either in
physical space (using finite difference or finite volume techniques) or in a functional space
(using finite element or spectral methods). In any case, the outcome of the numerical solution
is represented by a set of vector velocities at the nodal positions of a regular or an irregular
grid embedded in the flow domain.4 In order to integrate Eq. (38), the set of nodal velocities
must therefore be interpolated so as to continue v to any point of M.

Souvaliotis et al. [23] analyze the numerical issues associated with the solution of the
kinematic equation of motion, focusing mainly on the effects of the integration algorithms
(i.e., on the discretization, time-integration, and round-off errors intrinsic to any numerical
ODE-solver algorithm), on particle trajectories, on the localization of periodic points, and on
the scaling of the length of a material filament with time in a two-dimensional periodically
forced flow (flow between two eccentric cylinders).

In this section, we address yet another source of error in performing the Lagrangian
analysis, namely the impact of different interpolation strategies on the principal kinematic
quantities that are commonly used to assess mixing performance.

A. Lagrangian Analysis and Model Flow

The Lagrangian approach to mixing can be dated back to the work by Aref [24], who
first highlighted the possibility of obtaining efficient convective mixing within a seemingly
simple 2D flow. This author also provided numerical evidence to support the idea that
efficient mixing protocols are always associated with chaotic features of tracer trajectories
(i.e., solutions of Eq. (38)) for a set of initial conditions of positive Lebesgue measure.5

This finding has proved of a general character, as demonstrated in a series of computational
[25, 26], theoretical [27, 28], and experimental [29, 30] works.

As a result of these studies, it became clear that a Eulerian characterization of mixing
through the structural form of the function v(x, t) provides only partial insight into mixing
performance associated with flow, and that a Lagrangian characterization of mixing cannot

4 Spectral methods provide a finite dimensional approximation of the solution as a weighted combination of
basis functions, so, apparently, there would be no need for interpolation. In most practical cases, however, e.g. in
3D flows, the number of basis functions is on the order of 104 or more, making the computational time required to
obtain the value of velocity at a single point unacceptable in the context of kinematic analysis. This is due to the
fact that, for most of the physically relevant applications of Lagrangian analysis, the integration of the kinematic
equations of motion should be performed over long intervals of time and over a statistically significant ensemble
of particles (see below for a practical example related to the estimate of the Lyapunov exponent of a chaotic flow).
The velocity field can be computed on a discrete set of points and then continued to any point of the flow domain
through interpolation of the nodal values.

5 For two-dimensional flows, this means practically that the chaotic region possesses a finite nonzero “area.”
The necessity of making use of the Lebesgue measure stems from the phase-space structure of chaotic flows, since
periodic points are an invariant set, dense in the chaotic region. Consequently, the simpler Riemann measure is an
inadequate tool for approaching the statistical properties of chaotic flows.
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be approached in terms of a general solution of Eq. (38), as chaotic systems display sensitive
dependence on initial conditions. A set of feasible computational tools that are sufficiently
robust for the purposes of numerical investigation is therefore needed in order to establish
mixing performance objectively. This set of tools includes the following:

• Poincaré sections. This technique applies to time-periodic and spatially periodic flows
(more generally speaking, it can be implemented on any flow that admits a global section
[31]). In the time-periodic case, it consists of superimposing onto a single plot all the
positions occupied by a generic particle at multiple integers of the flow period. In cases
where the trajectory is chaotic, its Poincaré section densely fills a subregion of the mixing
space with positive measure (chaotic region).

• Lyapunov exponents. Poincaré sections yield a primarily qualitative characterization of
chaos, providing an overall picture of the number and shape of the chaotic regions associated
with a given mixing protocol. A more quantitative but still global measure of the “amount of
chaos” within each of the chaotic regions is achieved through computation of the Lyapunov
exponents, which yield the average rate of stretching experienced by an infinitesimal vector
attached to a chaotic orbit x(t). In quantitative terms, Lyapunov exponents are defined as

lim
t→∞

1

t
ln λ(t), (39)

where the stretching λ(t) is defined as λ(t) = ‖l(t)‖, l(t) = (l1(t), . . . , ln(t))T being the
solution of the ODE system

dli

dt
=

n∑
j=1

∂vi

∂x j

∣∣∣∣
x(t),t

l j , ‖l(0)‖ = 1. (40)

For an n-dimensional flow, there are at most n different values, �1, . . . , �n , of the limit
in Eq. (39) [31], albeit for almost all the values of l(0) (with the exception of a set of zero
measure), the quantity Eq. (39) converges towards the maximum Lyapunov exponent of the
system �, which is the maximum of �i , i = 1, . . , n. Most importantly, the set of Lyapunov
exponents is independent of the initial condition x(0) whenever x(0) is chosen within one
and the same chaotic region.

• Stretching distributions and short-time Lyapunov exponents. As they are the result of
long-time averaging, Lyapunov exponents cannot account for the heterogeneity of stretch-
ing events. A statistical measure of this aspect of micromixing is provided by the PDF,
F(ln(λ(t))), of the values ln λ(t) of stretching experienced by a population of vectors at-
tached to N points distributed within the mixing space. If the N vectors are embedded
within a single chaotic region, C, then the mean 〈ln λ(t)〉F scales as �t , where � is the
largest Lyapunov exponent associated with C. Analogous computations can be performed
by using the ratio ln λ(t)/t (short-time Lyapunov exponent) instead of ln λ(t). In this case,
the PDF tends toward a Dirac’s delta function centered at �t .

• Line and surface tracking. Lagrangian tracking of material lines and surfaces (rep-
resenting the interface between segregated regions in 2D and 3D, respectively) that are
passively advected by the flow provides a geometric characterization of the evolution of
partially mixed structures. In the presence of chaos, passive interfaces undergo a space-
filling dynamics that is independent of the initial shape and size of the segregated regions.
The characterization of the invariant properties of passive interfaces is of great interest
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in modeling the dynamics of chemical reactions and of heat transfer processes that occur
along with chaotic advection [35, 36]. Most importantly for our purposes, interface tracking
constitutes a severe test of interpolation schemes.

In the remainder of this section, we use a two-dimensional time-periodic model flow
to compare the influence of interpolation on Poincaré sections, Lyapunov exponents, and
evolutes of material lines that are passively advected by the mixing protocol.

The time-periodic flow is obtained by blinking every T/2 time units two steady fields v1

and v2, where v1 and v2 are defined through their stream functions

ψ(1)(x, y) = ψ(x, y) = sin2(πx) sin(πy2) (41)

and

ψ(2)(x, y) = ψ(x, 1 − y), (42)

where ψ(1), ψ(2) are defined on the unit box 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Each vi = v(i)(x) =
(∂ψ(i)/∂y − ∂ψ(i)/∂x)T (i = 1, 2) is therefore by definition an incompressible flow. The
assumption of instantaneous switching, rigorously verified in creeping-flow regimes, is
a reasonable approximation at low Reynolds numbers (see [37] for a discussion of this
subject). Although the stream function ψ is a solution of neither the Navier–Stokes nor the
Stokes equation, it yields qualitatively similar behavior to that of a physically realizable
driven cavity flow,6 as far as global properties associated with the kinematics of tracer and
inertial particles are concerned.

The stream function Eq. (41) originates a velocity field with vanishing normal and tan-
gential velocity components at the boundary of the cavity, with the exception of the wall
at y = 1, where vx is different from zero. This model flow, which is referred to here as
prototypical cavity flow (PCF), depends on a single parameter, namely the half period of
motion T . In presenting simulation results, we focus on the protocol T = 0.3, which gives
rise to a main region of chaotic motion intertwined with islands of quasiperiodicity. The
numerical integration of the kinematic equations is performed by applying a Runge–Kutta
fourth-order method.

B. Effects of Interpolation

In order to analyze the accuracy of C∞ interpolation and its effects on the Lagrangian
analysis of chaotic flows, it is useful to make a quantitative comparison with the classical
interpolation schemes most commonly used for fluid dynamics problems.

There are essentially three main approaches:

1. Piecewise linear interpolation. Starting from a triangulation of the mixing space
M, the velocity field is expressed as a linear function of the local (barycentric) coordinates
within each element (triangles in two dimensions, tetrahedrons in three). This is the simplest
approach to interpolation and finds application especially in connection with finite-element
simulations. Piecewise linear interpolation yields a globally continuous, piecewise smooth
interpolated function.

6 The main difference with respect to classical cavity flow is that this model possesses no singularities at the
corners of the cavity.
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TABLE I

Interpolation Accuracy Referred to the Uniform Distance Eq. (35)

for Several Two-Dimensional Fieldsa

Linear C0 Bilinear C∞

N = 10 ψ 5.74 · 10−2 5.00 · 10−2 1.48 · 10−2

vx 3.72 · 10−1 3.35 · 10−1 1.70 · 10−1

vy 2.93 · 10−1 2.36 · 10−1 3.22 · 10−2

N = 30 ψ 6.74 · 10−3 6.0 · 10−3 1.63 · 10−3

vx 4.88 · 10−2 4.75 · 10−2 2.36 · 10−2

vy 4.75 · 10−2 2.70 · 10−2 2.67 · 10−3

a ψ(x, y), vx (x, y), vy(x, y) associated with PCF flow for linear, bilinear, and
C∞ interpolation (M = 3, β = 25, Ne = 3).

2. Bilinear interpolation. It is applied for square grids and is the most common method
in many applications. To quote Press et al. [4], bilinear interpolation is “frequently close
enough for government work.”

3. Bicubic interpolation. Both piecewise linear and bilinear interpolation yield a con-
tinuous interpolating function for a generic field ψ(x, y) that possesses discontinuous partial
derivatives at the boundary between adjacent discretization elements. Bicubic interpolation
returns a C1 interpolating function and requires the specification at each node of the values
of the gradient, i.e., of ∂ψ/∂x , ∂ψ/∂y, and of the second-order cross derivative ∂2ψ/∂x∂y.
This is a significant drawback, as the accuracy of the interpolation depends essentially on
the accuracy of the values of these first- and second-order derivatives.7 Due to its intrinsic
arbitrariness, this method is not explicitly considered here.

We focus on the accuracy properties for a comparatively small number of grid points per
coordinate axis (N = 10 ÷ 30), corresponding to (N + 1)2 overall grid points, since this is
the most critical case frequently encountered in applications.

Let us first consider the accuracy of the interpolation scheme expressed in terms of
uniform distance between the exact and the interpolated field over the unit square. Table 1
gives the results for the piecewise linear, bilinear, and C∞ interpolation (with pseudo C1

continuation) of the function ψ(x, y), vx (x, y), vy(x, y) for N = 10 and 30 grid points per
coordinate axis. C∞ interpolation with pseudo C1 continuation gives better results than the
other methods considered. The two components of the velocity field obtained from the C∞

interpolation algorithms are shown in Fig. 6.
The quantitative characterization of accuracy in interpolating the velocity field provides

only partial validation of an interpolation method when applied within a Lagrangian frame-
work. Results deriving from Lagrangian analysis are affected by integral errors correspond-
ing to the accumulation of the interpolation error along a particle trajectory, on which
integration errors are unavoidably numerically superimposed.

As an initial check on the accuracy of an interpolation scheme for Lagrangian analysis,
we shall consider the asymptotic behavior of a particle trajectory starting from a point
belonging to a chaotic region C. Since the velocity field is a periodic function of time, we

7 Indeed, in the case of stream-function interpolation, assigning the first-order derivatives ∂ψ/∂y, −∂ψ/∂x of
the stream function is equivalent to specifying the velocity field at grid nodes, which is instead one of the purposes
of the interpolation.
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FIG. 6. Reconstruction of the velocity field of PCF flow using C∞ interpolation with pseudo C1 continuation
(M = 3, β = 25, Ne = 3). (A) vx (x, y). (B) vy(x, y).

can consider a stroboscopic representation expressed by a Poincaré map �, xn+1 = �(xn),
where xn = x(n Tp).

The numerical experiment is performed as follows: we pick an initial point x0 ∈ C belong-
ing to a chaotic region and consider a segment of the (discrete) trajectory for a sufficiently
large number of iterations Nas, with Nas of the order 5 · 104. After this transient, the asymp-
totic behavior of the trajectory is analyzed. Figure 7 shows a comparison of asymptotic
behavior for several interpolation schemes for the PCF flow at T = 0.3 for N = 10. Piece-
wise linear interpolation yields trajectories that become attracted to one of the walls after
a short transient. The same situation occurs for bilinear interpolation, as shown in Fig. 7A
obtained after a transient of Nas = 4 · 104 iterations. As can be observed, the trajectory
wanders throughout the chaotic region (compare Figs. 7A and 7C) before collapsing at the
wall point. This means that C0 interpolations introduce significant and structural errors. The
asymptotic behavior of a chaotic trajectory becomes attracted by a limit set, represented in
this case by a single point. This behavior is clearly a numerical artifact, as it is physically
inconsistent with flow incompressibility. This means that for a coarse grid, C0 interpolations
are unable to preserve the invariance property of the chaotic region, and superimposition of
interpolation and integration errors causes Eq. (38) to behave like a dissipative system.

Conversely, C∞ interpolation (Fig. 7B) yields an asymptotic global picture of the chaotic
region that closely resembles the result deriving from the integration of the exact velocity
field (Fig. 7C).
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FIG. 7. Stroboscopic trajectory of a point belonging to the chaotic region for different interpolations of
the velocity field for PCF flow (T = 0.30) with N = 10. (A) Bilinear interpolation (Nas = 4 · 104). The arrow
indicates the limit point of the trajectory. (B) C∞ interpolation with pseudo C1 continuation (M = 3, β = 25,
Ne = 3, Nas = 5 · 104). (C) Exact velocity field.
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FIG. 8. Scaling of 〈log λ(n)〉 vs n for the PCF flow (T = 0.30) for N = 10. Continuous line: results deriving
from the exact velocity field. (�) Bilinear interpolation. (�) C∞ interpolation with pseudo C1 continuation
(M = 3, β = 25, Ne = 3).

This semiqualitative observation is corroborated by analysis of the scaling of the Lyapunov
exponents. In the present (two-dimensional) case, the spectrum of Lyapunov exponents
associated with a generic trajectory is of the type {−�, �}, with � > 0 if the orbit is
chaotic.8

Figure 8 shows the behavior of 〈log λ(n)〉 vs n for T = 0.3 for several interpolation
schemes. Given that the flow is time-periodic, the stretching exponent is computed from its
Poincaré map,

〈log λ(n)〉 = 1

Ns

Ns∑
i=1

log ‖�n∗(xi )v‖ ∼ �n, (43)

where �n ∗(x) = ∂�n(x)/∂x is the Jacobian matrix of the n-th iterative �n of the Poincaré
map �, v is a generic unit vector, and Ns indicates the number of averages along the
trajectory. Eq. (43) enables us to compute the Lyapunov exponent � (referred to the Poincaré
map) from the linear scaling with time n of the stretching exponents.9

Simulation results are obtained by averaging Ns = 104 points along a trajectory, after a
transient of Nas = 4 · 104 iterations. The starting point is the same for all the simulations.

As can be observed, C∞ interpolation provides a time behavior of the stretching expo-
nents that is very close to that obtained from the integration of the exact velocity field,
while bilinear interpolation fails to predict the scaling Eq. (43) due to the fact that the tra-
jectory collapses towards a limit point at the boundary. The occurrence of a weakly positive
Lyapunov exponent obtained from bilinear interpolation depends on the choice of the initial
transient Nas = 4 · 104 iterations. As can be observed from Fig. 7A, the trajectory remains
for some time within the chaotic region before collapsing towards the limit point.

8 The Lyapunov spectrum structure follows from the fact that the flow is measure-preserving. This means that∑i=n

i=1
�i = 0 [32].

9 The Lyapunov exponent of the time-continuous system is given by �/2T .
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FIG. 9. Evolution of a material filament after n = 2 iterations of the Poincaré map associated with the PCF
flow at T = 0.30. (A) Linear interpolation. (B) Bilinear interpolation. (C) C∞ interpolation with pseudo C1

continuation (M = 3, β = 25, Ne = 3). (D) Exact velocity field.

The clash of linear and bilinear interpolation depends of course on the coarse discretiza-
tion that was adopted (N = 10) in order to test the “Lagrangian accuracy” of interpolation
schemes in a critical case.

As a further test on interpolation performance, we consider the dynamics of partially
mixed structures. In 2D systems, this means determining the evolution of a generic closed
line. The tracking of material lines makes it possible to uncover the underlying invariant
geometry that characterizes laminar chaotic flows, namely the global unstable foliation
associated with the chaotic region. In the limit of vanishing diffusivity, this geometric object
behaves like an attractor [35, 36] for passively advected interfaces. In this case, the difference
between C0 and C∞ interpolation is striking, since the first fails to preserve the smoothness
of evoluted interfaces as a result of derivative discontinuities across the cell boundaries.

This phenomenon is clearly shown in Figs. 9 and 10, which show the evolute after
n = 2 periods (i.e., at a time t = 2T ) of a circumference of radius ε = 10−1 centered at
(0.7, 0.5). A coarse grid (N = 10) was purposely chosen to highlight differences among the
interpolation schemes. C0 interpolation schemes, both linear and bilinear, fail to reproduce
the evolution of a material line as from the early stages of the mixing process (Figs. 9A and
9B and 10A and 10B compared to Figs. 9D and 10D). Conversely, interpolation schemes
that are globally differentiable (and, a fortiori, C∞) yield a geometrical representation of
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FIG. 10. Evolution of a material filament after n = 6 iterations of the Poincaré map associated with the
PCF flow at T = 0.30. (A) Linear interpolation. (B) Bilinear interpolation. (C) C∞ interpolation with pseudo C1

continuation (M = 3, β = 25, Ne = 3). (D) Exact velocity field.

partially mixed structures that is fairly close to that obtained from the exact velocity field
(compare Figs. 9C and 9D and 10C and 10D).

It should also be mentioned that C0 interpolation schemes prevent the analysis of higher-
order geometric properties such as local interface curvature, which has proved useful in
characterizing chaotic dynamics in general [33], and bubble breakup and coalescence phe-
nomena in particular [34].

The result derived in this section for the evolution of passively advected interfaces starting
from an interpolated velocity field over a coarse grid is analogous to what occurs in the
case of inertial particles moving by viscous drag [39] within a two- or three-dimensional
chaotic flow [40, 41]. The application of coarse C0 interpolation was shown to produce
a distorted picture of the limit attractor, qualitatively analogous to what is observed for
passive interfaces in Figs. 9 and 10.

V. CONCLUDING REMARKS

The introduction of C∞ interpolation is designed to provide a simple interpolation scheme
with arbitrary regularity. The regularity issue is often overlooked, but can be of paramount
importance in many problems related to first- and second-order differential properties
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obtained from the solution of ordinary or partial differential equations involving interpolated
fields.

From a practical point of view, the property of compact support of the interpolation basis
functions ensures that estimation of the field at any point involves solely the contribution
of the basis functions falling within a prescribed region of influence. This means that the
value of the interpolated function is obtained by summing over a number of basis functions
that is much smaller than the total number of grid points.

Theorems 1–3 ensure the applicability of this interpolation scheme and provide a simple
and computationally straightforward iterative way to obtain the interpolation coefficients
starting from an arbitrary initial choice, as a result of the contractive nature of the linear
operator associated with the interpolation scheme.

Within the manifold of possible applications, fluid dynamics problems (e.g., Lagrangian
analysis of particle motion and mixing performances) appear to be the natural domain
of application of this interpolation technique. More generally speaking, the interpolation
scheme proposed may prove a better choice than other classical methods whenever the
regularity of the interpolating function plays a role.

C∞ interpolation applies to a discrete representation of scalar and vector fields. Due
to the compactness of the support of the basis functions, it can be used in the context of
meshless (e.g., spectral) methods, in order to reduce the computational burden associated
with the pointwise evaluation of the field, starting from a generalized Fourier expansion
involving many (∼104 ÷ 105) modes.

Lagrangian analysis provides a significant benchmark by highlighting defects of inter-
polation methods that would be difficult to observe in Eulerian simulations.

It may be useful to mention in passing that as the expansion with respect to the basis
ω(x; xi , δ, β), Eq. (8), can be applied to develop efficient compactly supported collocation
methods for solving partial differential equations, conceptually analogous to wavelet collo-
cations, and for approaching gauge theories of fluid dynamics, i.e., obtaining the potential
functions associated with the poloidal–toroidal decomposition of an incompressible three-
dimensional velocity field starting from a discretized knowledge of it. This issue will be
discussed in detail elsewhere.

REFERENCES

1. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer-Verlag, Berlin,
1996).

2. P. K. Yeung and S. B. Pope, An algorithm for tracking fluid particles in numerical simulations of homogeneous
turbulence, J. Comput. Phys. 79, 373 (1988).

3. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1985).

4. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran—The Art of
Scientific Publishing, 2nd ed. (Cambridge Univ. Press, Cambridge, UK, 1992).

5. W. S. Russell, Polynomial interpolation schemes for internal derivative distributions on structured grids, Appl.
Numer. Math. 17, 129 (1995).

6. J. W. Deardorff and R. L. Peskin, Lagrangian statistics from numerically integrated turbulent shear flow, Phys.
Fluids 13, 584 (1970).

7. P. K. Yeung and S. B. Pope, Lagrangian statistics from direct numerical simulations of isotropic turbulence,
J. Fluid Mech. 207, 531 (1989).

8. J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge Univ. Press, New York,
1989).



168 GIONA AND CERBELLI

9. M. D. Buhmann, Multivariate cardinal interpolation with radial-basis functions, Constr. Approx. 6, 225 (1990).

10. R. Schaback, Comparison of radial basis function interpolants, in From CAGD to Wavelets, edited by K. Jetter
and F. Utrera (World Scientific, Singapore, 1993), pp. 293–305.

11. Z.-M. Wu and R. Schaback, Local error estimates for radial basis function interpolation of scattered data,
I.M.A. J. Numer. Anal. 13, 13 (1993).

12. G. Cybenko, Approximation by superposition of sigmoidal functions, Math. Contr. Signals Syst. 2, 303
(1989).

13. K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators,
Neur. Net. 2, 359 (1989).

14. J. Park and I. W. Sandberg, Universal approximation using radial-basis-function networks, Neur. Comput. 3,
246 (1991).

15. S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114, 185 (1986).

16. G. Deslauriers and S. Dubuc, Symmetric iterative interpolation schemes, Constr. Approx. 5, 49 (1989).

17. O. V. Vasilyev, S. Paolucci, and M. Sen, A multilevel wavelet collocation method for solving partial differential
equations in a finite domain, J. Comput. Phys. 120, 33 (1995).

18. M. Holmström, Solving Hyperbolic PDEs using Interpolation Wavelets, Uppsala Univ. Inst. för Teknisk
Databehandling, Report 189/1996.

19. C. K. Chui, An Introduction to Wavelets (Academic Press, San Diego, 1992).

20. V. S. Vladimirov, Equations of Mathematical Physics (Mir, Moscow, 1984).

21. G. H. Golub and C. F. Van Loan, Matrix Computations (North Oxford Academic, Oxford, 1983).

22. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover,
New York, 1975).

23. A. Souvaliotis, S. C. Jana, and J. M. Ottino, Potentialities and limitations of mixing simulations, AIChE
J. 41, 1605 (1995).

24. H. Aref, Stirring by chaotic advection, J. Fluid Mech. 143, 1 (1984).

25. B. Eckhardt and H. Aref, Integrable and chaotic motions of four vortices. II. Collision dynamics of vortex
pairs, Phil. Trans. R. Soc. Lond. Ser. A 326, 655 (1998).

26. F. J. Muzzio, P. D. Swanson, and J. M. Ottino, The statistics of stretching and stirring in chaotic flows, Phys.
Fluids A 3, 822 (1991).

27. V. Rom-Kedar, A. Leonard, and S. Wiggins, An analytical study of transport, mixing, and chaos in an unsteady
vortical flow, J. Fluid Mech. 214, 347 (1990).

28. D. Beigie, A. Leonard, and S. Wiggins, Invariant manifold templates for chaotic advection, Chaos, Solitons,
and Fractals 4, 749 (1994).

29. C. W. Leong and J. M. Ottino, Experiments on mixing due to chaotic advection in a cavity, J. Fluid Mech.
209, 463 (1989).

30. H. A. Kusch and J. M. Ottino, Experimental and computational studies of mixing in complex Stokes flows:
The vortex mixing flow and multicellular cavity flows, J. Fluid Mech. 269, 199 (1994).

31. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ.
Press, Cambridge, UK, 1995).

32. J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys. 57, 617
(1985).

33. S. Cerbelli, J. Zalc, and F. J. Muzzio, The evolution of material lines curvature in deterministic chaotic flows,
Chem. Eng. Sci. 55, 363 (2000).

34. M. Tjahjadi and J. M. Ottino, Stretching and breakup of droplets in chaotic flows, J. Fluid Mech. 232, 191
(1991).

35. M. M. Alvarez, F. J. Muzzio, S. Cerbelli, A. Adrover, and M. Giona, Self-similar spatiotemporal structure of
intermaterial boundaries in chaotic flows, Phys. Rev. Lett. 81, 3395 (1998).

36. M. Giona, A. Adrover, F. J. Muzzio, S. Cerbelli, and M. M. Alvarez, The geometry of mixing in time-periodic
chaotic flows I—Asymptotic directionality in physically realizable flows and global invariant properties,
Physica D 132, 298 (1999).



C∞ INTERPOLATION OF DISCRETE FIELDS 169

37. M. Liu, R. L. Peskin, and F. J. Muzzio, Structure of the stretching field in chaotic cavity flows, AIChE J. 40,
1273 (1994).

38. M. Giona and A. Adrover, Nonuniform stationary measure of the invariant unstable foliation in Hamiltonian
and fluid mixing systems, Phys. Rev. Lett. 81, 3864 (1998).

39. M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids
26, 883 (1983).

40. M. Liu, R. L. Peskin, and F. J. Muzzio, Fractal structure of a dissipative particle–fluid system in a time-
dependent chaotic flow, Phys. Rev. E 50, 4245 (1994).

41. A. C. Omurtag, P. Dutta, and R. Chevray, Attractors of finite-sized particles: An application to enhanced
separation, Phys. Fluids 8, 3212 (1996).


	I. INTRODUCTION
	II. LOCALIZED Ci BASIC FUNCTIONS
	FIG. 1.

	III. INTERPOLATION METHOD
	FIG. 2.

	IV. NUMERICAL EXAMPLES AND ACCURACY
	FIG. 3.
	FIG. 4.
	FIG. 5.

	V. INTERPOLATION OF VELOCITY FIELDS THAT GENERATE LAGRANGIAN CHAOS
	TABLE I
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.

	V. CONCLUDING REMARKS
	REFERENCES

